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The Navier-Stokes equation is proved from first principles (rotational sym- 
metry and conservation of momentum, mass, and energy) using renor- 
realization-group ideas. That is, we consider a system described by one 
(classical) conserved vector field and two conserved scalar fields, and 
demonstrate that on a large scale it obeys the Navier-Stokes equation. No 
assumptions about the physical meanings of the fields are required; in par- 
ticular, no results from thermodynamics are used. The result comes about 
because the Euler equation is an exact fixed point of an appropriate scale-coar- 
sening transformation, and the coefficients of the eigenvectors of the transfor- 
mation with the largest ("most relevant") eigenvalues include (in dimension 
d >  2) the thermal conductivity and the bulk and shear viscosities, leading to 
Navier-Stokes behavior on a large scale. For d<2 ,  the largest eigenvalue 
corresponds to a convection term, and the Navier-Stokes equation is incorrect. 
Our method differs from previous renormalization approaches in using 
time-coarsening as well as space-coarsening transformations. This allows renor- 
realization trajectories to be determined exactly, and allows the determination of 
the macroscopic behavior of specific microscopic models. The Navier-Stokes 
equation we obtain is almost, but not exactly, the same as the conventional one; 
distinguishing between them experimentally would require measurement of the 
very small asymmetry of the Brillouin line in a simple fluid. 

KEY W O R D S :  Renormalization group; transport equations; Navier-Stokes 
equation. 

1. I N T R O D U C T I O N  

The Navier-Stokes equation has been used for over a century as a 
phenomenological description of the macroscopic behavior of fluids. 
Arguments for the universal applicability of this description have long been 
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given, (1) based on writing the lowest-order differential operators which 
have the correct symmetry. There are two basic difficulties with these 
arguments: 

(A) How does one define a density field in a fluid of discrete particles, 
as a continuous function of position? 

(B) The arguments apply just as well to a two-dimensional fluid as to 
a three-dimensional fluid. But within the last 15 years, it has become 
apparent that the conclusion is incorrect for a two-dimensional fluid, which 
does not obey the Navier-Stokes equation. 

Difficulty (A), "coarse-graining," has been approached in many dif- 
ferent ways. One can smooth out a delta-function density by smearing it 
over many interatomic spacings (2) and examining only the 
large-wavelength (k---, 0) limit or let the atoms become infinitely small, (3) 
or consider a limit in which a correlation time approaches zero. (4) The 
approach we adopt is to use a discrete formulation of hydrodynamics 
which was introduced several years ago. (5) This avoids the necessity of 
dealing with continuous functions at all, until one is near the fixed point 
(i.e., looking at the system on a very large time scale). Then, as we will see 
later, the cells can be taken to be much smaller than the physically relevant 
lengths and the discrete description merges naturally into a continuum 
description. 

Difficulty (B) is related to the well-known "long-time tail" problem. 
The velocity autocorrelation function decays at long times as t -d/2, where d 
is the spatial dimensionality. (6~ The shear stress autocorrelation behaves 
similarly, and its time integral is proportional to the shear viscosity via the 
Green-Kubo formula. (7) But the integral diverges for d = 2 ,  so it appears 
that one cannot define a viscosity. This conclusion is supported by 
molecular-dynamics simulation, (8 io) which indicates that a two-dimen- 
sional fluid does not obey the Navier-Stokes equation. Even in three 
dimensions, these effects lead to difficulties such as slow convergence of the 
Green-Kubo integral, strong (power-law) system-size dependence of the 
viscosity obtained in nonequilibrium simulations, and nonanalytic strain- 
rate dependence of the shear stress. (m 

The reason for the long-time tails and the failure of the Navier-Stokes 
equation in two dimensions has become clear; it is due to the nonlinear 
convective term [(u. V)u in du/dt-I, which becomes increasingly important 
on large scales. This conclusion has emerged from both mode-coupling (12) 
and approximate renormalization-group (13~ calculations. In spite of the fact 
that the qualitative physics involved is understood, it has not previously 
proved possible to make a precise renormalization-group analysis of this 
problem which displays exactly the fixed point and the eigenvalues and 



Renormalization-Group Derivation of Navier-Stokes Equation 991 

eigenvectors of the linearized renormalization transformation. This failure 
is related to the development of non-Markovian ("memory") behavior as 
the space scale is coarsened. This appears to us to be inevitable as long as 
one insists on retaining a small time scale. In the work of Forster, Nelson, 
and Stephen (13) on the case of an incompressible fluid, for example, the use 
of a continuous time variable (i.e., an infinitesimally small time scale) leads 
to a non-Markovian renormalized equation of motion. It is possible in 
principle to cope with this by an expansion in powers of frequency, (13) and 
the zero-frequency limit considered in Ref. 13 gives the right fixed point 
(i.e., the higher orders in frequency are "irrelevant" in the 
critical-phenomena sense.) However, we are here principally interested in 
the corrections to the fixed point, and it does not appear to be possible to 
compute the eigenvectors and eigenvalues exactly by this approach. We will 
show that the problems can be resolved by the use of a time-coarsening as 
well as a space-coarsening transformation: the system then remains 
Markovian (in the sense that future behavior depends on only a few past 
times) and can be exactly followed as it approaches the fixed point. This 
method has been applied previously to disordered diffusive systems, (14~ in 
which it was possible to exactly compute nonanalytic long-time tails arising 
from nonlinear effects very similar to those in a fluid. This suggests that the 
method should be able to calculate long-time tails and related effects in 
fluids. 

In addition to allowing more exact study of fixed points than con- 
tinuous-time methods, our discrete scale-coarsening transformations can be 
applied directly to small-scale equations of motion (EOMs) obtained by 
molecular-dynamics simulation. Such EOMs have already been calculated 
numerically, ~15) but prior to the present exact analysis of the approach to 
the fixed point it was not possible to determine macroscopic properties 
accurately. 

We will begin by briefly describing the discrete formulation of 
hydrodynamics (Section2) and a parameterization of the discrete 
equations of motion which simplifies application of the scale-coarsening 
transformations (Section 3). We find only two suitable transformations, the 
fixed points of which are exactly the two most common approximations to 
the Navier-Stokes equation: the Euler equation (Section 4) and the incom- 
pressible-fluid equation (Section 7). By including the most relevant eigen- 
vectors near a fixed point, we get the Navier-Stokes equation if d>2 ,  
together with an exact description of the 'most relevant fluctuations (Sec- 
tion 6). 

This amounts to-a first-principles derivation of the linearized Navier- 
Stokes equation assuming only conservation of mass, energy, and momen- 
tum. Concepts from thermodynamics which must be arbitrarily assumed in 
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conventional derivations, such as pressure, entropy, temperature, and 
"local equilibrium," are not assumed here. Quantities equivalent to 
pressure, entropy, and temperature emerge in a natural way from the 
renormalization-group analysis, however, suggesting that an analysis of 
this sort may perhaps provide an attractive pedagogical alternative to the 
introduction of these concepts through axiomatic thermodynamics. 

2. D I S C R E T E  H Y D R O D Y N A M I C S  

The application of discrete hydrodynamics to fluids is very similar to 
its application to the calculation of long-time tails in disordered diffusive 
systems. (16'14) We will summarize here the discrete formulation, which is 
described in detail in Ref. 16. For any given distance scale Ar and time scale 
At, we describe the state of the system at times tph (integer multiples of At) 
by the mass, energy, and momentum contents of cubical cells of length dr, 
denoted Cph(rph , tph ). The subscript ph means "physical," as opposed to 
dimensionless; the index e is M, E, Px, Py, Py, or Pz for the mass, energy, 
and momentum contents, respectively, and rph is the position vector of the 
center of a cell. For purposes of scale coarsening, we construct an equation 
of motion in terms of dimensionless contents 

c=(r, t )= Cph(rAr, tAt)/Ac ~ (2.1) 

where r is the dimensionless position vector of the center of a cell of unit 
length, the integer t is a dimensionless time, and Ac M, Ac e, and Ac e are 
conveniently chosen units of mass, energy, and momentum. 

The results of any macroscopic experiment can be predicted from these 
discrete variables, if the scales Ar and At are chosen appropriately. The 
dynamics of the system (i.e., the joint probability distribution of all the 
variables) can be completely specified by giving the equilibrium 
time-correlation functions (mean values of arbitrary products). In a 
stationary system, this is equivalent (5) to specifying the probability dis- 
tribution for the contents at time At, in a constrained ensemble in which 
the contents at time t ~< 0 have fixed values. We will refer to this dis- 
tribution as the "discrete equation of motion." Our concern in this paper is 
mostly with Markovian EOMs in which there is no dependence on times 
t < 0. This distribution can also be described by its moments. The first 
moments are the mean values of the contents ca(r, 1) at time At in an 
ensemble having fixed constents c(r, 0), c(r, -1),.. .  at times t ~< 0. Such a 
moment is distinguished by square brackets [ ], and expanded as a power 
series in the c(r, 0)s: 
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[ca(r, 1)] = ~ [ca(r, 1)]c='(r,,O ) c~'(r ', O) 
r',a' 

+ ~ ~ [ca(r, l ) ] c = ' ( r , , O ) d ( r , , o ) C a ' ( r 1 , 0 ) C a " ( r ' , O ) +  "'" (2.2) 
r',od r",ct" 

The square brackets with cas as subscripts are just constants, the coef- 
ficients in the power series. To achieve rapid convergence near some 
nominal values c~ of the contents, we have redefined c a by subtracting c~. It 
follows that there is no constant term; [c~(r, 1)] = 0 when ca(r, 0 ) = 0 .  

The corresponding equation for the second moment  does have a con- 
stant term, for which we use a subscript 1 (formally, the product of zero 
cas): 

Eel(r, 1) ca'(r ', 1)] = [ca(r, 1) c~'(r ', 1)] t + " -  (2.3) 

The coefficient Ecc] ~ describes the conditional fluctuations of the contents. 
The coefficients in Eqs. (2.2) and (2.3) will be referred to as discrete 

propagators.  They depend only on differences of the rs, and can be dealt 
with most conveniently in terms of Fourier transforms (~4~ such as G~,, 
defined by 

(2re) d 6 ( k -  k') G~,(k, 1; k', O) = ~ e ikr+ ~k'~'[ca(r ' 1)]~'~,,o~ 
r,r' 

(2.4) 

This describes the effect of quantity e '  (i.e., M, E, or P) at t = 0 on quantity 
at t = 1. It  is periodic in the ks because of the discreteness of the rs. 

Because the other arguments are redundant,  we will refer to it as G~,(k). 
The Fourier transform (FT) of the conditional correlation, or fluc- 

tuation propagator ,  Eq. (2.3), is denoted G~a'(k). We will also use the non- 
linear propagator  [c~]c~,c ,, of Eq. (2.2), whose FT is G~,a,,(k; k', k") (here 
k' + k" = k). We will regard an equation of motion E as being specified by 
the Gs defined above. 

We will want to perform space- and time-coarsening transformations S 
and T, and a mass, energy, and momentum rescaling transformation 2 R, on 
an equation of motion E which describes a system on the scale Ar, At, Ac e, 
Ac M, Ac e. We define S, T, and R by requiring that SE describe the same 
system on the scale 2Ar, At, Ac ~, Ac E, Ac e, that TE describe it on the scale 
in which 2At replaces At, and that RE do this when 2Ac a replaces Ac ~. The 
action of these transformations on the propagators  G is derived in detail in 

2 More generally, we could rescale each conserved quantity separately. However, we show in 
the Appendix that one can only get a nontrivial fixed point if they are rescaled by the same 
factor, as they are by the above R. 

822/38/5-6-13 



994 Visscher 

Ref. 16. It is very simple in the limit of small Ar, which suffices for our 
present purposes: for example, the space-coarsened G~, and G ~' are 

G;,(k)' = G~,,(k/2) (2.5) 

G~'(k) ' =  2aG~'(k/2) (2.6) 

3. P A R A M E T E R I Z A T I O N  OF THE DISCRETE EOM'S:  
EXPONENTIAL EOM'S  

We will use a particular parameterization of the space of discrete 
equations of motion which makes it easy to apply the rescaling transfor- 
mations. We define a set of "exponential EOMs, 3 obtained by exponen- 
tiating (in a sense made precise below) "infinitesimal generator" equations 
of motion Eg. The exponentiation is done in the continuous-space (At ~ O) 
limit, in which the propagators are functions of continuous variables r; this 
allows us to parametrize the propagators of the generating EOM as power 
series in a Fourier variable k. Once the continuous-space exponential EOM 
has been defined, we can obtain finite-Ar discrete EOMs by space 
coarsening. (14) On an intuitive level, the generator EOMs can be thought of 
as evolving the system through an infinitesimal time, and being related to 
an equation of motion in a conventional continuous-time theory. For 
example, if a propagator of E~ is G~,(k), the equation of motion for the kth 
Fourier component ca(k, t) of conserved quantity c~ in a continuous-time 
theory would be 

(a/dt) c (k, t) = t) (3.1) 

But we will use the generating equation of motion here only as a 
mathematical device; Eq. (3.1) does not make sense in the present context, 
because our t is discrete. 

The exponentiation procedure is described in detail in Ref. 14: we will 
summarize it here. The finite-time exponential EOM is defined from the 
generating EOM (which is assumed Markovian) by 

E = exp(Eg) -= lim (~E + Eg/n)" (3 .2)  
n ---* ~ 3  

(here ~e is the identity EOM, which assigns to all variables at t = 1 the 
same values they had at t = 0). This requires defining the sum and product 
of discrete-time EOMs. The sum is just defined by adding the 

3 In Refs. 14 and 16, we referred to this set as the "invariant manifold." 



Renormalization-Group Derivation of Navier-Stokes Equation 995 

corresponding propagators. The product is defined by a graphical 
procedure described in detail in Ref. 14. Basically the product EbEa evolves 
a system for one time interval according to Ea, and then for another 
accoding to Eb. If Ea=Eb, this is just the same as time coarsening: 
TE=EE. The virtue of parametrizing the EOM by the generating 
propagators Gg is that they transform very simply under the time-coarsen- 
ing transformation T: 

T: Gg ---r 2Gg (3.3) 

The actions of S and R on Gg are the same as on G [Eqs. (2.5) and (2.6)]. 
We will assume in this paper that the fixed points we are looking for 

can be obtained as exponential EOMs; this requires in particular that they 
are Markovian. This is certainly true on a large scale in a fluid. As we will 
see in Section 6, long-time tails and viscosity renormalization, which are 
sometimes thought of as involving non-Markovian effects, are nonetheless 
correctly treated by our procedure. We can also account for truly non- 
Markovian effects such as viscoelasticity in this formulation, as we discuss 
in Section 8. 

4. SEARCHING FOR FIXED POINTS 

Let us look among our exponential EOMs for a fluid system for one 
which is a fixed point under a suitable coarsening transformation (a com- 
bination of S, T, and R). So as not to prejudice the matter, we consider an 
arbitrary product STZRL 

To do this, consider the most general form of the linear propagator G~. 
for a system with one vector and two scalar as (i.e., a fluid). We suppose 
here that G~. is an infinitesimal generator, although the symmetry 
requirements are the same for the finite-time propagators. Spatial isotropy 
implies that a scalar propagator like GM(k) must be a function of k 2 only, 
which we expand in a power series 

G~(k) = D ~ k  2 + O(k 4) (4.1) 

[There is no constant term since conservation of mass requires GM(0)= 0.] 
In analogy with the diffusion case, (t6) we may think of D~tM as the dif- 
fusivity of mass density. In searching for a fixed point under the scale-coar- 
sening transformation STZR y, we can ignore the k 4 terms: they are less 
"relevant" in the critical-phenomena sense. That is, the coefficient of such a 
term shrinks under coarsening faster than DMM does, and will be zero at 
the fixed point and smaller than DMM near the fixed point. To see this, note 
that the eigenvalue of DMM under S is 2 _2 (i.e., S: D--r2-ZD, from 
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Eq. (2.5)] and that of the coefficient of k 4 is 2 4. (Their respective eigen- 
values under T~R y are unknown yet, but are the same.) Similar con- 
siderations for GMe, G~t, and Ge e lead to DMe, DEM, and DeE. A scalar-vec- 
tor propagator like G~ (j  = x, y, or z) is forced by isotropy to be kj times a 
function of k 2, which can be expanded 

Ge~(k) = --ikjVMp + O(k 3) (4.2) 

where again the k 3 term is less relevant. The reality of the real-space 
propagators implies that the Ds and vs are real. We define VpM, VEp, and 
Vpe similarly. 4 Finally, isotropy allows the vector-vector propagator to 
have terms in the dyadic kjk~ and in k26jt (it also must vanish at k = 0), and 
we write it 

Pl k Gpj( ) -Dvk2(b j , -  ~j~,) -  Dnkjk, + O(k 4) (4.3) 

We may think of DT and DL as the diffusivities of transverse and 
longitudinal momentum, respectively. 

Thus the most general linear generating propagator may be written in 
matrix form to order k 2 as 

-- D MM k2 -- D MEk 2 -- i~) Mpk  

G~,(k) = - DEM k2 - D E c k  2 - i vepk  / (4.4) 

- - iVpMk  - - i v e E k  - D T k 2 ( ~  - ~ ) -  D p p k k ]  

where ~ is the identity 3 • 3 matrix and ~ =  k/lkl. 
If we use this generating propagator in the conventional 

time-derivative equation (3.1), we get something which looks very like the 
phenomenological Navier-Stokes equation, (17) with the correspondences 

D r =  (At/Ar2)(tl/p), D L = (At/Ar2)[r + (4tl/3)]/p (4.5) 

where t /and  ~ are the shear and bulk viscosities. 
The D~4M and DME terms in Eq. (4.4) correspond to V 2 terms in the 

dp/dt equation, which are conventionally omitted from the 
phenomenological theory. The argument for this is based on identifying the 
mass flux with the momentum density, which is certainly valid in a uniform 
system (i.e., to order k~ The question really hinges on its validity to order 

4 We can relate the vs to thermodynamic quantities by comparing Eqs. (3.1) and (4.2) to the 
equation of continuity and the ordinary Euler equation. This gives vMp=AceAt/AcMAr, 
Vee = (Ace At/Ace Ar) ~3e(p, s)/gp, veM = (Ac~t At~Ace dr) Op(p, e)/Op, and vee = 
(AceAt/AceAr) Op(p, e)/Oe, where p is the mass density, e is the energy density, p is the 
pressure, and s is the entropy per unit mass. 
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k 1, however, which is not at all obvious. The experimental consequences of 
nonzero D~tM or DMe appear not to be easily measurable; see Section 5. 

The de/dt equation gives 

DeM = At2 ?T(p, e)/Op and DEE = ANt OT(p, e)/Oe (4.6) 

where 2 is the thermal conductivity and T the temperature. In the present 
nonthermodynamic context DEM and Dee can be thought of as defining the 
temperature as a linear combination of e E and c M, up to a constant factor. 

Let us now write the most general form for the conditional-correlation 
generator G~'(k). The symmetry considerations are exactly the same as for 
the linear generator G~, except that the real-space correlation [Eq. (2.3)] 
must be symmetric, so G~'(k)= G~'~(k) *, and the most general matrix is 

OMMk 2 aME k2 

G~'(k) = { aMek2 aEE k2 
\ - i b M k  - ibEk  

ib~k 
ib Ek 

ark2(1 -- ~]~) + aepkk / 
(4.7) 

From these we can compute the eigenvalues under the combined transfor- 
mation ST~RL First consider the fluctuation generator: 

STZRY: a-- '2 a 2+z-2Ya, b--*2d-~+z-2yb (4.11) 

If any b is nonzero, it is more relevant than the as, and the fixed point will 
have a--0 .  But the correlation matrix [Eq. (4.7)] with a = 0  and b r  
violates the basic requirement of nonnegativity [i.e., f *  ~=' G (k)f~, >>, 0 for 
any column vector J~ this follows from the requirement that the square of 
an arbitrary real linear combination of c% be positive]. Thus we must 
conclude s that b = 0. 

To determine z, we must consider how the parameters of the linear 
propagator behave under the coarsening transformation: 

ST~R y: D ~ 2 Z - 2 D ,  v ~ 2 Z - l v  (4.12) 

5 Note that this is not a requirement of symmetry; in particular, a less relevant term ib'k2k 
would be perfectly allowable. 

S: D ~ 2 - 2 D ,  v-~2-~v, a--+2a-2a, b ~ 2 a - l b  (4.8) 

T: D ~ 2D, v ~ 2v, a + 2a, b ~ 2b (4.9) 

R: D ~ D ,  v ~ v ,  a + 2 - 2 a ,  b ~ 2 - 2 b  (4.10) 

where the as and bs are real. 
We must now determine how the Ds, vs, as, and bs transform under & 

T, and R, from Eqs. (2.5), (2.6), and (3.3). Writing D for D2,, etc., we get 
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Clearly at a nontrivial fixed point one of these parameters should be finite 
(neither zero nor infinite). There are evidently two choices: 

(1) The "ballistic" coarsening transformation: choosing z =  1 makes 
velocities invariant (v has eigenvalue 1) so v is finite but D = 0 at the fixed 
points; we will call these the "Euler fixed points." 

(2) The "diffusive" coarsening transformation: choosing z = 2  gives 
finite Ds and v ~ ~ at the "incompressible-fluid" fixed points (Section 7.) 

Here we will examine the Euler fixed points, for which Eqs. (4.11) and 
(4.12) become 

STRY: D~2-1D,  v~v ,  a--->2u-l-ZYa (4.13) 

Choosing a value for the exponent y is to some extent a matter of taste; it 
just determines the content scale we use for the fluctuations. In the diffusive 
case, (~6) it was natural to choose y so that the most relevant conditional 
fluctuations are finite at the fixed point; this also yielded finite equilibrium 
fluctuations at the fixed point. In the Euler case, this corresponds to y = 
( d -  1)/2 (so the as have eigenvalue 1 and are finite at the fixed point). This 
turns out to be awkward; the fixed point would have nine parameters (four 
vs and five as). It would also have divergent equilibium fluctuations: as we 
will see in Section 6, the fluctuations are generated at rates proportional to 
the as, and die away at rates proportional to the Ds, so the equilibrium 
fluctuation is proportional to aiD. If the Ds are zero, the fluctuations of an 
initially constrained system simply increase linearly with time without 
bound. A much more aesthetic choice is to require a and D to have the 
same eigenvalue, so the equilibrium fluctuations have eigenvalue 1. This 
gives y=d/2, and only the vs are nonzero at the fixed point. The 
fixed-point EOM has no fluctuation generator. It can describe the 
evolution of a system with arbitrary fluctuations, but those fluctuations will 
never change. 

Assuming y=d/2, then, we have found the generators of a 
four-parameter family of fixed points of the transformation STR u/z, one for 
each choice of the four vs. The EOM of any fluid system must approach 
one of these Euler fixed points; the values of the four parameters will be 
related to the thermodynamic properties of the fluid. 

We now want to compute the actual (finite-time) fixed-point EOM E 
by exponentiating one of these generating EOMs, say, Eg. We will first 
calculate the linear propagator matrix [Eq. (2.4)] of E. The rules given in 
Section 3 for adding and multiplying EOMs amount, for the case of the 
linear propagator matrices, to adding and multiplying matrices; therefore, 
the exponentiation defined by Eq. (3.2) reduces to conventional matrix 
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exponentiation. We are thus faced with the task of exponentiating the fixed 
point generating propagator  matrix [Eq. (4.4) with D = 0]:  

G~,(k) = 0 -- ivEpk (4.14) 

- - i  Mk -- iveEk 0 

Clearly the algebra would be easier if this matrix had only two nonzero 
entries. We can achieve this by exploiting the mathematical equivalence 
between the scalar contents cM and ce of mass and energy: the equations of 
motion allowed by symmetry would be the same if they were replaced by 
any two linear combinations, say, c e and Cs. There are four degrees of 
freedom in such a transformation, of which two are just normalization con- 
stants: we will exploit the two remaining degrees to decouple one of the 
new variables from the momentum content ce, to order k. It is not hard to 
see that this is achieved by using as new variables 

f 
C s ~- - - l ) E p  V M p  (4.15) 

vcp 0 v / \ Cp / Cp 

Here v z -  VMeVpM+ VpEVEp; we rescale the momentum content by v for 
mathematical convenience [it makes Eq. (4.16) symmetric to order k].  The 
new dimensionless variables Cp and cs turn out to be related to the pressure 
and the entropy. 6 We will see [Eq. (4.21)] that v is the dimensionless 
sound velocity. 

The linear propagator  for Cp and Cs is G = QGQ - t ,  where G is the 
propagator  for cM and ce [Eq. (4.14)] and Q is the transformation matrix 
in Eq. (4.15): 

(~ ~ 1 G = 0 0 0 ==- - i r k  (4.16) 

-- irk 0 0 

Equation (4.16) defines a matrix K; with the vector parts written out in (00 
0 0 0 (4.17) 

K =  kx 0 0 

ky 0 0 0 

detail for d =  2 it is 

6 To be precise, the relations in footnote 4 imply that (Acp/At Ar2)cp is the excess over the 
nominal pressure, and [zlcM Ac e Ac e Ar e At  de(p, s)/Os] l cs is the excess entropy per unit 
mass. 
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Then in the same two representations 

  00 (i0 0 0) t 0 0 0  
K 2= 0 0 = 0 kxkx kykx 

0 0 k \ 0  0 k~ky kyky 

If we define 

(4.18) 

K-= K/k (4.19) 

then ~3=~ and R2R 2 = R 2, i.e., R 2 is a projection operator onto the 
longitudinal sound modes. 

It should now be clear why we refer to this as the "Euler" fixed point: 
if we use the propagator (4.16) in the conventional time-derivative 
equation (3.1), we get exactly the usual Euler equation. 

It is easy to show that the actual finite-time propagator exp[G(k)]  is 

e x p ( - i r K )  = (4 - R 2) + R 2 cos vk - iKsin vk 

In matrix form, the propagator  is 

(4.20) 

cos vk 0 - i~ sin vk \ 
exp( - irK) = O 1 0 ) (4.21) 

\ -  i/~ sin vk 0 ~ - ~:/~(cos vk - 1 ) 

This propagator can be easily Fourier transformed into real space in 
one dimension, where it has a simple physical interpretation: Defining 
x = r -  r', we get 

6 ( x -  v) + 6(x + v) 0 a (x -  v ) -  a(x + v) \ 
G(x) = 0 6(x) 0 ) (4.22) 

a (x -  v) - a(x + v) 0 6 ( x -  v) + 6(x + v) 

An initial condition with excess pressure at r' = 0 at t' = 0 can be evolved to 
t = 1 by applying this matrix to the appropriate column vector: 

[Cp--- l]  6 ( x - v )  6(x+v)  

 L s=0 ( o t 
\ c e = 0 ]  \ a ( x - v ) - 6 ( x + v )  ! 

(4.23) 

Thus two sound pulses are produced, moving to the right and left with 
dimensionless velocity v; the rightward one has positive momentum, and 



Renormalization-Group Derivation of Navier-Stokes Equation 1001 

the leftward one a negative momentum. An initial momentum at r ' = 0  
produces the same rightward pulse but a leftward pulse of opposite phase; 
an initial entropy excess at r ' =  0 just stays where it is. A transverse wave 
(with cp perpendicular to k), which of course can exist only for d>  1, is 
also unchanged. Thus the "Euler" fixed point we have found has the 
behavior of the conventional Euler equation, and describes an inviscid, 
thermally insulating fluid. 

What we have shown by our change of variables is that any of the 
four-parameter family of Euler fixed points can be transformed into one of 
a one-parameter family, parametrized by the sound speed v. It is worth 
reiterating the great qualitative difference between the Euler fixed point in a 
fluid and the Fick's law fixed point in a diffusive systems, (16~ or the incom- 
pressible fixed point in a fluid. In either of the latter, any initial correlations 
will relax with time into uniquely defined equilibrium correlations. At the 
Euler fixed point, fluctuations neither grow nor decay. This is, of course, 
related to the much greater importance of states far from equilibrium (e.g., 
turbulent states) in fluids than in diffusive systems. 

5. THE PROPAGATORS OF THE EXPONENTIAL EOM'S 

Let us now move away from the Euler fixed points and calculate the 
EOM defined by the most general generating EOM, Eqs. (4.4) and (4.7). 
This will allow us later, by specializing to the EOMs near a particular 
Euler fixed point, to calculate the eigenvectors and eigenvalues of a 
linearized coarsening transformation. 

As we saw in Section 4, actual computations are easier in the 
"pressure-entropy" representation than in the "mass-energy" one. Thus we 
begin by transforming the general generating linear propagator [Eq. (4.4)] 
by the transformation matrix Q [Eq. (4.15)]: 

- -  Dpp  k 2 - -  Dps  k 2 - -  i r k  \ 
G ( k ) = Q G Q  - 1 =  -D~pk  2 - D s  k2 0 ) (5.1) 

- irk 0 - D T k 2 ( ' ~  - -  ] ~ )  - -  Dpekk 

where Dpp ,  Dps  , Dsp, and D s are linear combinations of the old DEM , 
DMM, DeE, and DME. As in Section 4, we must exponentiate this matrix to 
get the finite-time propagators. This is easiest if we write it in terms of pro- 
jection matrices k 2 [Eq. (4.19)], 

o) (00i  
r =  0 0 , ~s= 0 i (5.2) 

o o 1 ~ o o 
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onto the longitudinal, transverse, and entropy subspaces, respectively. 
These are a complete set in that the 5 • 5 unit matrix is 

= K 2 + ~ T + ~  s (5.3) 

With K, these are a set of four commuting matrices. To write Eq. (5.1), we 
also need three "noncommuting" (with K) matrices  010) t000) (100) 
~ p s = \  0 t  0 0 ~ p -  1 0 0 4 = 0 0 0 (5.4) 

0 0 0 0 0 0 0 0 - k ~  

Then the generating propagator [Eq. (5.1)] becomes 

G( k ) = - i r K -  D L k2 K 2 - D rk2 ~ T-- D ~k2 ~ ~ 

-- D _  k2~ _ - -  O p s k 2 " ]  ps  - D ~pk2~ w 

where 

(5.5) 

D r  = (Dpp+Dep) /2 ,  D _  = ( D p p - D e e ) / 2  (5.6) 

To get the linear propagator, we need to exponentiate Eq. (5.5). Near 
the Euler fixed point, there is no reason to make this accurate to higher 
than first order in the Ds; D 2 has eigenvalue 2 -2 (i.e., shrinks by this factor 
under the coarsening transformation STRd/2), and is no larger than several 
other terms in the generator which we have ignored. However, it is easy to 
exponentiate the commuting terms in v, DT, Ds ,  and D r  exactly to all 
orders, and this will prove useful in discussing the incompressible-fluid 
fixed point (Section 7), where D r  and D s  are not small. Denoting the sum 
of these terms by Go(k), we have 

exp [Go(k)] = R 2 e x p ( -  D Lk 2 ) e x p ( -  irK) + ~ T e x p ( -  D r k  2) 

+ ~ s exp( - D s  k2) (5.7) 

Thus the "commuting" Ds are the ones which give us the dissipative 
behavior we associate with the Navie~Stokes equation. Transverse 
motions are damped by DT, which is a dimensionless kinematic shear 
viscosity. Sound waves are damped by DL, and entropy inhomogeneities 
are damped by the dimensionless thermal diffusivity Ds. The effects of the 
noncommuting Ds are much more subtle (in fact, essentially unmeasurable 
in macroscopic experiments, as we will see later.) We will treat them to first 
order only, by a graphical procedure derived in detail in Ref. 14 for 
exponentiating the sum of an "unperturbed" EOM, E, and a small pertur- 
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bation F. In our case, the unperturbed linear propagator describing E is 
Go(k), and that for F is 

G F( k ) = - D _  k2~ _ - D psk2~ p, - D s~k2~ up (5.8) 

The perturbed finite-time propagator is then 

;2 e x p [ G o + G F ] = e x p [ G o ] +  d u e x p [ ( 1 - u )  Go(k)]GFexp[uGo(k)] (5.9) 

Equation (5.9) is obtained from the rules of Ref. 14, but is also fairly 
intuitive: the unperturbed propagator has added to it a term in which the 
system evolves for dimensionless time u according to Go, is perturbed by 
GF, and evolves again for 1 - u .  It is straightforward to evaluate Eq. (5.9), 
but algebraically messy. We will content ourselves with computing the per- 
turbation only to first order in all the Ds [i.e., using Go(k) = - i r k  only]. 
Then, for example, we get for the D~p term (using the projection operators 
~ and/?2 to remind ourselves that ~sp turns pressure into entropy) 

--Dspk 2 fs du exp[ - irK(1 - u)] { s{sp/? 2 exp[ - ivKu] 

= _Ospk2{ ,p/?2 f] du exp[ - ivk/?u] (5.10) 

If we restrict it to the pressure-momentum subspace, the matrix Go in the 
exponent is invertible ( /?-i  =/?), so ~ duexp[Gou] = Go 1 exp[Gou], giv- 
ing for the term (5.10) 

-i(Dsp/V)'fl spK(e irk - 1 ) (5.11 ) 

Similar techniques give for the other two terms 

- i ( D p j v )  K(e i~x_ 1 ) { p , - i ( D _ / 2 v )  K(e -~1~- eS'K){ _ (5.12) 

The entire propagator can be written in matrix form using Eq. (4.21), 

(Dps/v)k sin vk ik? exp ( -DLk  2) sin vk TM e x p ( - D r k  2) cos vk 
- (D_/v )k  sin vk 

( D J v ) k  sin vk 

i~? e x p ( - D L k  2) sin vk 

exp( - D s k  2) 

i(Dps/v)(1 - cos vk)k 

i(D,p/v )( 1 - cos vk) k 

[/~: e x p ( - D L k  2) cos vk 

+ [~l~(D _/v)k  sin vk 
+ (1 - / ~ )  e x p ( - D r k 2 ) ] ,  

(5.13) 
but is more easily used in the form of Eqs. (5.7), and (5.11), (5.12). 
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Physically, the noncommuting Ds describe pressure-entropy coupling 
(D,p and Dps ) and a time delay or phase lag between the pressure and the 
momentum in a sound wave [D ; note that the cos vks on the diagonal of 
Eq. (5.13) are effectively changed to cos(vk+D_k/v)].  We know of no 
experimentally measured consequences of them; in the present context, we 
can attribute this to the extra factor 1/v in Eqs. (5.11), (5.12). 

We now turn to the fluctuation propagator of the exponential EOM 
defined by Eqs. (4.4) and (4.7). We must first convert the fluctuation 
generator [Eq. (4.7)] to the pressure-entropy representation, as we already 
converted the linear propagator [Eq. (4.4)], to Eq. (5.1). The result is 

Gg(k) = QGg(k) Qtr = 

appk aps k2 
aspk 2 a~k 2 

0 0 

0 

0 

ark2(1 - ~ )  + aep]~ 
(5.14) 

where app, a,p = aps, and a~ are linear combinations of the old agM, aMe, 
and aEe, and Qtr is the transpose of the transformation matrix Q in 
Eq. (4.15). We compute the fluctuation propagator by the graphical 
method of Ref. 14, using E =  exp[-G0] again as our "unperturbed" EOM 
(this has only the "commuting" terms, and no fluctuation propagator) and 
the fluctuation generator Gg~' [Eq. (5.14)] as our "perturbation" EOM. 
The graphical rules (14) give for the fluctuation propagator 

G~'(k) = f~ du exp[(1 - u) G0(-k) ]~  Gg='(k) exp[(1 - u) Go(k)]~; (5.15) 

(This is exact to all orders in ~~' Gg , not just to first order: the higher-order 
terms vanish.) The graph leading to Eq.(5.15) is shown in Fig. 1; 

(3 f~' 

k 

k 

t -1 

:3 "U 
o<' 

-0 
Fig. 1. The graph for calculating the fluctuation propagator ~t~'(k) [Eq. (5.15)]. 
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heuristically the fluctuation at t = 1 is created by superposing fluctuations 
(represented by the rightmost horizontal dumbell) generated at different 
times u, each of which then propagates according to exp(Go) for a time 
1 -  u, as indicated by the vertical lines of length 1 -  u. We can write 
Eq. (5.15) as a matrix product, if we transpose the last factor (otherwise c( 
and fl' are in the wrong order). The part of Eq. (5.15) corresponding to 
"commuting" terms in Gg is easy to evaluate to all orders in DL, D r ,  D s ,  
and v; we will evaluate the "noncommuting" part only to zeroth order in 
the Ds (but exactly in v). The "commuting" part of ~g [Eq. (5.14)] is 

Gg~. = aL k2~22 + as  k2{ s + aT k2{ r (5.16) 

[analogous to Eq. (5.5)] where aL = (app Jr- aee)/2. It gives (replacing 1 - u 

by u) 

G~(k) = du exp[uM] Gg,. (5.17) 

where 

M = G o ( - k ) + G o ( k ) =  - - 2 [ D c R Z + D r ~ r + D s ~ s ] k  2 (5.18) 

(the v term is even in k and cancels). Then 

M - '  = -- [~]~2/D c q- { T/DT q- { s / D s ] / 2 k  2 (5.19) 

so the integral is 

Gc(K) = M ~Gge[exp(M) - 1 ] = (aL/2Oc)[  1 -- exp( --2DLk2)] R 2 

+ (ar /2Dr) [1  - e x p ( - 2 D r k 2 ) ]  { r 

+ (as /2Ds)[  1 - exp( - 2Dsk2 ) ]  ~ s (5.20) 

The noncommuting part of Eq. (5.14) has a term with coefficient a_ = 
( a p p - a p p ) / 2  involving ~ [Eq. (5.4)], which anticommutes with K, and 
can therefore be moved past powers of K by replacing K by - K :  

du ei~Ua k2~ _ e -i~K~ = a k 2 du e2ivKu~ 

= - - i (a_ /2v)  K(e  2~vx- 1)4 

Using ~,pe -i~Ku-- ~ w ~ e  - i ~ u =  ~sp, the aps term becomes 

(5.21) 

i(apjV)[~ spK(e irK_ 1) - K(e ' v x -  1)~ps] (5.22) 
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The fluctuation propagator given by Eqs. (5.20)-(5.22) gives the 
correlations at time A t, in an ensemble having no fluctuations at time zero. 

The equilibrium equal-time averages can be determined from the fluc- 
tuation propagator by a self-consistency procedure: We can compute the 
averages at time At by evolving those at t = 0 via the linear propagator 
G~(k) and adding those generated by the fluctuation propagator. Requiring 
these averages to be the same as those at t = 0 gives an equation which can 
be solved for the averages. This has been done for diffusive systems in 
Ref. 16, and will be done in detail for the present fluid case in a future 
publication. To lowest order, the equal-time fluctuation matrix is found to 
be diagonal in the pressure-entropy-momentum representation: 

(ac/2Dr) k2 + (as/2Ds) ~ s + (aT/2Dr)~ r (5.23) 

[This can be thought of as the At ~ o~ limit of Eq. (5.20), in which the 
exponentials vanish.] Equation (5.23) explains the difficulty in defining the 
fluctuations at the Euler fixed point: they diverge if the Ds are taken to be 
zero. The numerical values of the fluctuation amplitudes aL/2DL, as/2Ds, 
and ar/2Dr are, of course, proportional to absolute temperature and can 
be obtained from thermodynamic results for fluctuations in very large cells. 

We have also calculated the unequal-time averages in terms of the as 
and Ds, and thereby obtained the scattering function S(k, co) which is 
measured in light-scattering experiments; this will also be reported later. 
The resulting spectrum has the same three terms which are obtained from 
the phenomenological theory. (18) The first describes an unshifted 
Lorentzian Rayleigh line (width ~Ds), the second the Brillouin doublet 
(frequency shift ~v, width ~DL) and the third an asymmetry in the 
Brillouin line shape. The relative magnitude of the asymmetry term is a 
linear combination of D_/v,  Dsp/V, Dps/V , and apsDiJa L. The only dif- 
ference between our prediction and the phenomenological one is that in the 
latter aps---0 and there are fewer independent longitudinal Ds (two, since 
DMM = D~tE=0). Thus the two widths DL and Ds determine everything, 
and the asymmetry is a particular linear combination of them. (18) In the 
present theory, the asymmetry is an independent parameter. Thus even a 
rough measurement of the asymmetry ought to determine which theory is 
correct. Unfortunately, however, the asymmetry is very small, because of 
the factor 1/v. For Ar at 235 K and p =  lg/cm 3, we have (~8) physical 
parameters D L , p h  ~--- 10  - 3  cm2/s and vph - 105 cm/s. For scattering wavgvec- 
tor q~ l0 s cm -~, scales appropriate for the Brillouin line are A r ~ q  -~..~ 
10 -s cm, At~Ar2/DL.ph ~ 10 7 s (so the dimensionless linewidth Dc~  1). 
Then the dimensionless velocity is v = Vph At/Ar = 1 0  3, and (if D_ ~D) the 
relative asymmetry is D _Iv ..~ 10-3. This means that the intensities one half- 
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width to the right and left of the line center differ by ,-~ 10 -3 .  The relative 
differences are much greater farther out in the wings, but clearly this would 
be a difficult experiment, especially since the resolution of available 
Fabry-Perot interferometers is no smaller than the linewidth. (191 As far as 
we are aware, even the linewidth has not been quantitatively measured in a 
classical simple liquid. The asymmetry may be enhanced by using a larger 
q, as in neutron scattering. However, it is known (2~ that at these 
wavelengths and frequencies other small-scale effects, such as 
viscoelasticity, must be taken into account. 

6. EIGENVALUES AND EIGENVECTORS: 
THE NAVIER-STOKES EQUATION 

In this section, we will use the explicit formulas derived in Section 5 
for the exponential-EOM propagators to determine the most relevant 
eigenvectors of the linearized coarsening transformation near the Euler 
fixed point. In fact this is almost trivial, since the coarsening transfor- 
mation STR a/2 [Eq. (4.13)] does not couple v, the Ds, or the as. The 
change in the exponential EOM to first order in any of these parameters 
constitutes an eigenvector, whose eigenvalue is determined by the behavior 
of that parameter under STR a/2. The eigenvector corresponding to the 
sound attenuation coefficient DL, for example, is seen from Eq. (5.7) to 
have linear propagator - KZe- iris, and eigenvalue 2 - 1 [Eq. (4.13)]. Those 
for the other commuting Ds (Dr and Ds, the shear and entropy dif- 
fusivities) have the same eigenvalue; they are "irrelevant" in the 
critical-phenomena jargon. The eigenvector corresponding to v is 
"marginal" (has eigenvaluel); actually there are four of these, 
corresponding to the original four vs in the mass-energy representation. 
The eigenvectors for the "noncommuting" D_, Dsp, and Dps have coef- 
ficients D/v instead of D [Eqs. (5.11)-(5.12); they have the same eigenvalue 
2-1 as the commuting Ds with respect to the Euler fixed point, but will 
behave differently near the incompressible-fluid fixed point (Section 7). All 
of the other eigenvectors we can obtain by perturbing the linear propagator 
(e.g., adding Burnett terms of order k 3) have smaller eigenvalues; they are 
less "relevant." As the scale Ar gets large, they will shrink and the system 
will be described by an Euler fixed-point EOM plus six terms with coef- 
ficients DL, Ds, Dr, D ,  Dsp, and Dps. Thus the Navier-Stokes equation, 
although originally arrived at phenomenologically, has a very simple renor- 
realization-group interpretation: it is exactly the collection of EOMs 
represented by .the Euler fixed-point EOMs and their most relevant eigen- 
vectors. Any nonpathological EOM for a fluid with the proper symmetry 
and conservation laws will be led to one of these Navier-Stokes EOMs on 
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a large scale (and on an even larger scale, of course, to the Euler fixed 
point). 

We have thus far only perturbed the linear propagator of the Euler 
fixed point. We can also turn on the fluctuations (the as). Turning on ac 
changes the fluctuation propagator [Eq. (5.20)] by acK 2 (a sound-wave 
fluctuation); the eigenvalue is thus again 2 -1 [Eq. (4.12)], as it is for the 
other commuting fluctuations as and a r  as well. The coefficients of the 
noncommuting perturbations in Eqs. (5.21), (5.22) are a_/v and asJv, 
which also give the eigenvalue 2 -1. All other perturbations are less 
relevant. Thus if we take fluctuations into account, there is really an 
11-parameter manifold around each Euler fixed point (i.e., 15 parameters in 
all). Not all of the five as are independent; they are constrained by Galilean 
invariance. 

Let us now consider the nonlinear propagator G~,~.(k; k', k"), describ- 
ing the influence of c~'(k ') c~"(k ") on the content ca(k). The conservation 
laws require it to vanish when k = 0, so it must have at least one factor of 
k. Terms with higher powers of k are less relevant (the eigenvalue has an 
extra factor 2 -1 for each factor of k) so we need consider only terms 
proportional to k, which take the form 

~;~,~,,k~ + N~,~,,k~, (6.1) 

Taking symmetry into account, there are ten independent Ns, of which 
seven are convective in nature; it turns out that this means they are 
expressible in terms of the vs because of Galilean invariance. A detailed 
analysis of them will be given elsewhere. Here we will note only that there 
are coefficients of the form N~? which describe convection of momentum. 
These nonlinear terms will enter the graphical expansion for the linear 
propagator of the exponential EOM, via the graph of Fig. 2. The effect was 
calculated explicitly in Ref. 14 for a diffusive system with a nonlinear scat- 
tering term. It leads to a long-time tail in the time correlation function and 
a renormalization of the transport coefficient. The corresponding 
calculations for the fluid case will be described elsewhere; a long-time tail 
arises in the momentum-density correlation function, and there is a renor- 
realization of the shear viscosity proportional to N2ar, in agreement with 
the results of Forster, Nelson, and Stephen. (13) The important point here is 
that in this formulation, a Markovian EOM with a nonlinear generator 
gives rise in a straightforward way to the "long-time-tail" effects which 
require the assumption of non-Markovian memory functions in some other 
formulations. In particular, we can analyze the stability of the Navier- 
Stokes equation against nonlinear perturbations by examining the eigen- 
value of the perturbation described by Eq. (6.1) under the coarsening 
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Y 
N 

N 

Fig. 2. Graph for renormalizing the linear propagator. The small subgraphs labeled N 
represent the nonlinear generating propagator [Eq. (6.1)], the horizontal line is the ar term of 
the fluctuation generator [Eq. (5.20)], and the other lines represent the unperturbed linear 
propagator [Eq. (5.7)]. 

transformation S T R  d/2. We have ~16) S : N ~ 2  -a  1N, T: N ~ 2 N  
[Eq. (3.3)], and R: N - - , 2 N ,  so 

STRd/2: N--* 2 a/2N (6.2) 

Thus N is less relevant than the Navier-Stokes Ds (eigenvalue 2-1)  if d >  2, 
and the Navier-Stokes equation correctly describes a fluid on a large scale. 
If d <  2, it does not; the Ds are less relevant than N, and the macroscopic 
transport coefficients diverge. If d =  2, the transport coefficients diverge 
logarithmically. Because the parameters of the present formulation can be 
determined by small-scale molecular-dynamics simulation, it should be 
possible to calculate the transport coefficient renormalization numerically, 
which is not possible in mode-coupling approaches. 

7. T H E  I N C O M P R E S S I B L E - F L U I D  F IXED P O I N T S  

In looking for fixed points (Section 4), we found two coarsening 
transformations which had fixed points. One was the ballistic transfor- 
mation S T R  y, which gave the Euler fixed points. The other was the dif- 
fusive transformation ST2R  y, under which D ~ D, v ~ 2v, a ~ 2a-ZYa. 
Thus the fixed points have finite D and infinite v; we may as well choose y 

822/38/5m6-14 
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so a is fixed, giving y = d/2 just as for the Euler fixed point. Infinite sound 
velocity amounts to zero compressibility, so we will call these the "incom- 
pressible-fluid" fixed points. 

Which type of fixed point is most useful in a particular physical 
problem depends on the characteristic length and time scales of the 
problem. Given a characteristic physical length Ar, we can define a sound 
travel time t~ = Ar/vph and a diffusion time t D = Ar2/Dph, where typically 
t ~ t D  if Ar is large on a molecular scale. If we want to study phenomena 
on a short time scale At  ~ - t ,  (so V = V p h ( A t / A r )  ~ - -  1 and D,~ 1), i.e., sound- 
related phenomena, we should expand about the Euler fixed point. If we 
want to study diffusive or viscous phenomena, on the longer time scale 
At  ~- tD (SO V>> 1 and D---1), we should expand about  the incompressible 
fixed point. 

Computing the propagators of the exponential E OM  in the v ~ oe 
limit is a bit tricky. The largest term in the exponent is - i r K ;  its exponen- 
tial is given by Eq. (4.20). Roughly speaking, what happens as v ~ oe is 
that the cosine and sine terms oscillate rapidly and have a negligible effect, 
so e-;VK--+ 1 - R 2 .  This is just a projector onto the entropy and transver- 
se-momentum (Pr)  subspaces. The generating propagators referring to the 
longitudinal momentum and pressure subspaces disappear, leaving only the 
entropy and P r  generators. The propagator of the exponential E OM  is 
exactly 

exp(Gg) = e x p ( - D s k 2 ) ~  s + exp( -DTk2)~  T (7.1) 

That is, pressure and longitudinal momentum inhomogeneities at t = 0 dis- 
appear without a trace, leaving only entropy and transverse momentum at 
t = l .  

The fluctuation propagator at the incompressible-fluid fixed point can 
be computed just as in Section 5, and is given by Eq. (5.20). Note that there 
are sound fluctuations, even though the linear propagator instantly 
banishes them to infinity; we must think of them as being constantly 
replenished from infinity. This EOM is a function of aL, D r ,  aT, DT, as ,  
and Ds;  there is thus a six-parameter family of incompressible-fluid fixed 
points. 

Unlike the Euler fixed points, these do have well-defined equilibrium 
states. The procedure described in Section 5 gives Eq. (5.23) for the matrix 
of equilibrium fluctuations; this was correct only to lowest order in the 
general Navier-Stokes case, but it is exact at the incompressible fixed 
point. 

The significance of the incompressible-fluid fixed points is that an 
arbitrary fluid EOM will approach one of them under the diffusive coarsen- 
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ing transformation ST2R d/2. It will exhibit a universal behavior on 
moderately large scales as the fixed point is approached, which is deter- 
mined by the eigenvectors of the linearized transformation with the largest 
eigenvalues. The difficulty in doing this eigenvector analysis is that the 
general propagator [Eq. (5.13)] does not simply scale when v is doubled 
by the coarsening transformation (because cos vk does not). Nor can we 
expand in a small parameter (such as 1/v) so that the lowest term does. 
The most reasonable procedure we have found is to Fourier transform in 
time [that is, Fourier transform the propagators of an EOM exp(Egu) with 
respect to the dimensionless time u]. Then, for example, the lower left 
element of the matrix (5.13) becomes 

-- i~DL(09 -- vk )  
Oep(k, co) = (09 - / Jk )  2 + D ~ k  4 [- (co ~ -09 )  (7.2) 

where 09 is the dimensionless frequency (09 = covh At). For large v, this can 
be expanded in v-1 

Gep(k, 09)= (il~OL/k)v-l + O(v -2) (7.3) 

Expanding the entire matrix in v-~, we find a piece [including the term in 
Eq. (7'.3)] proportional to (DL/v)K; it is an eigenfunction with eigenvalue 
2-~ under ST2R a/2, since v ~ 2v. We find similar eigenfunctions with coef- 
ficients (DsJv) and (DSv), with the same eigenvalue. There is also a term 
with coefficient (D_/v2), which is a less relevant eigenfunction with eigen- 
value 2 -2 . The same sort of analysis of the general fluctuation propagator 
[Eqs. (5.20)-(5.22)] yields eigenvectors with coefficients a_/v and aJv, 
having eigenvalues 2-~. There are thus a total of five most-relevant eigen- 
vectors, with eigenvalue 2 -1, which determine the universal (d>2)  
large-scale behavior under the diffusive coarsening transformation. 

8. CONCLUSION 

We have presented what we believe to be the first consistent first-prin- 
ciples derivation of the Navier-Stokes equation which deals with coar- 
se-graining in a precise way and clearly predicts the failure of the equation 
in dimension d~< 2. As a by-product, we obtain a universal description of 
the fluctuations as well, both in equilibrium and in a constrained ensemble 
(the latter correspond to the "stochastic" fluctuations of Langevin-type 
theories). 

Because the-variables used are contents of discrete cells, the method 
provides a precise way of connecting small-cell data obtained by molecular- 
dynamics simulation to macroscopic transport coefficients. This can be 
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done by varying the "bare" parameters (D, v, a) so that the small-cell time 
correlations calculated from them by the methods of the present paper 
match those obtained by simulation. The macroscopic transport coefficients 
can then be calculated as described in Section 6, in a way which explicitly 
includes the "long-time tail" contribution (due to large-scale eddies) 
proportional to N2ar.  The convergence of this method with respect to 
system size should be much faster than that of Green-Kubo or non- 
equilibrium methods, (21) which must deal with the large-scale eddies by 
using a system large enough to contain them. In its present form, our 
technique must deal with relaxation phenomena such as viscoelasticity and 
structural, vibrational, or rotational relaxation by using a time interval 
larger than the relaxation time. However, it is possible to deal with these 
phenomena more efficiently by including additional dynamical variables 
(stress, intramoleeular energy and angular momentum); this will be dis- 
cussed in a later publication. 
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A P P E N D I X  

Instead of defining a single content-rescaling transformation R as in 
Section 2, we could define a separate mass-rescaling transformation RM 
such that is E is the EOM on a scale Ar, At, Ac E, Ac e, then R M E  is the 
EOM on a on a scale Ar, At, 2Ac M, Ac E , Ac e . Defining RE and Re 
similarly, it is evident that our previous R is just R M R e R p .  We can now 
look for a fixed point under a more general transformation than the ST~R y 
of Section 4, namely, . . . .  ~TZRy(M)]'~Y(E)I~Y(P)M *'E " 'e . Then vMe scales differently from 
veM, in contrast with Eq. (4.10). Equation (4.12) becomes 

VpM--*2 z - I+y(M)  Y(P)VeM , VMp"-'~2z--I+Y(P)--Y(M)VMp (A1) 

If y ( M )  ~ y(P), veM and vMe canot both be nonzero at the fixed point. And 
an EOM in which only one is nonzero gives trivial dynamics (physically, 
the dimensionless sound velocity is zero). For a nontrivial fixed point, we 
need a pair like vMe and vpM both nonzero. This requires y ( M ) =  y (P)  and 
z = 1. For VeE and vee to remain finite we then need y ( E )  = y(P) .  Thus we 
are led back to the case y = y ( E )  = y ( P )  = y ( M )  considered in the paper. 
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